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The possibility of the e4luih'bdum of a system of two rapidly rotating discs when their Newtonian attraction is exactly balanced 
by gravimagnetie repulsion is demonstrated. The dependence of the distance between the discs on the moments of momentum 
of the discs about the a~is of symmetry is obtained. The gravitational fields of the discs are modelled using the supereritical Kerr 
solutions in the weak-fiold appro~aation. The condition for there to be no conical points on the a ~  between the discs and the 
condition for there to be no dosed timelike lines in the General Theory of Relativity give, in the Newtonian limit, a system of 
two discs in equilibrium with a special distribution of the moment of momentum and the density. 

In steady gravitatienal fields, the force acting on a test mass can be split into two parts, one of which, 
for low partide velocities in the weak-field approximation, is identical with the Newtonian force, while 
the other is a gravhnagnetic (or gravitomagnetic) force. The gravimagnetie force acts in the same way 
as the Coriolis force and causes a precession of gyroscopes in the field of rotating masses [1, 2]; the 
analogy with a magnetic field which causes the Larmor rotation of electrons was discussed in [3]. Various 
methods of detecting the gravimagnetie force experimentally have been proposed. 

In this paper we use the weak-field approximation for the steady solutions of Einstein's equations 
without assuming the velocities to be small compared with the velocity of fight. An expression is obtained 
for the interaction force between rapidly rotating objects at considerable distances (Section 1). It is 
shown that equilibrium is only possible in a system of coaxially rotating discs if the distance between 
them does not exceed their dimensions. It is shown that the distribution of material in the disc must 
be compact since equilibrium is not possible between dust-like rings (Section 2). The central result of 
this paper is a proof that equilibrium is possible between two Kerr discs when their attraction is globally 
balanced by gravimagnetic repulsion (Section 3). 

Note that it was suggested in [4] that, within the framework of the General Theory of Relativity, steady 
configurations of soliton solutions without supports are possible. A more careful investigation of this 
problem was carried out in [5-7] using the formalism of Belinskii and Zakharov [8] and it was shown 
that it is impossible 1Io satisfy both conditions of regularity on the axis of symmetry between black holes: 
there are no conical points and no dosed timelike lines. 

These algebraic oanditions were investigated in [9] using analytic continuation of the parameters of 
the solution for two Kerr black holes in the supercritical region, and the distance between them was 
calculated approximately for two equal discs. A direct approach, not using the procedure of analytic 
continuation, was developed in [10]. By a numerical investigation of the corresponding algebraic system 
it was found that gk~bal equilibrium is possible in a disc-black hole system, as well as merging of the 
discs when they approach each other and the formation of an extremal Kerr black hole and other effects. 
The approach developed below agrees asymptotically with the weak-field approximation for the exact 
solution [10]. 

1. We shall take the equations of the timelike geodesic and steady gravitational fields in the form 

_d 
= _ _ ~,13~.~1% ~ ÷ ds c c - -  (gl3,a - ga,13) (1.1) 
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We have used the following notation here [1]: ga - -godgoo, h - goo, T~ - - gf~ + g~ogrJo/goo 
(a, I~, 5 = 1, 2, 3), ds 2 = godxidx j (i, j = 0, 1, 2, 3) is the square of the interval of steady space- 
time, T - (1 - ~2/c2)-v2, a) I~ are the components of the three-dimensional velocity, and the indices are 
juggled using the metric T~. For weak steady fields g00 ~ 1 + 2~/c 2 and motions, for which in Cartesian 
coordinates T~,a~l~a) v ~- --~)Z/c2, Eqs (1.1) take the form 

dyo,, I dx = -720,a (1 + 1) 2 / c 2 ) + 72 (V X H)a / c (1.2) 

Here x is the proper time of a particle and H ~ rot A, Aa  =- c2ga. The  equations of motion of a 
continuous medium with energy-momentum tensor Tij in weak steady fields can be written in the form 

Tia.i =-~p,a(2T0 ° - Tii)l c2 + ( j x H ) a  l c, cj a =-T ° 

For the fields occurring in Eq. (1.2) we have, from the linearized Einstein equations 

A~ = G(2T ° - Ti i) / c 2 (1.3) 

where T~ is the trace of the energy-momentum tensor of the field sources, and 

rot H --- 16~Gj/c (1.4) 

The vector cj has its own components of the component T o of the energy-momentum tensor of the 
sources. If the dimensions of the system of bodies are small compared with the scale of variation of 
the gravitational field and its total momentum is zero 

I T ° d V = Y  2 raaya~)oa x = 0 
V 

the force acting on this system can be represented in the form 

V(MI(~ + Kl • H/(2c)) 

where K1 is the total moment of momentum of the system 

2 
K 1 = ~ ( r - R l ) x j d V  =]~ maya( r  a - R i ) x l ~ t t  

V a 

and M is the total mass of the system 

c -2 ~ (2T ° - Ti i)dV = Y 2 2 2 maTa(l+10ct I c ) 
V ct 

If we use the approximate solutions of Laplace's equation far from the sources with mass M2 and 
moment of momentum K2, we have 

¢p= ir_R21, 

In this case the assumption T~t, ax)~u v ~ ---~,tx'O2/¢ 2 follows from the fact that, far from the sources, in the 
~" u 0 e first approximation we have h ~ = --~ ~h 0. Hence, the force with which one of th distant sources at rest 

acts on the other (body 2 on body 1, say) is 

_ ~ ( M I M 2  c2 0 2 1 ) (1.5) 
F =  V 1 IR1 _ R 2 - - - ~  I + Kt~KEf 30x~)x~2 IRI _-R21 

2. However, the interaction between extended objects is not described by such a simple formula. We 
will first calculate the projection on the axis of symmetry of the gravimagnetic force of interaction 
between two rotating rings Fgm. It is equal to K1Hr/c, where Hr is the radial component of the 
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gravimagnetic fieild strength produced at points of the first ring by the second ring and K,4 is the angular 
momentum of the ringA (A = 1, 2) about the axis of rotation. We obtain from (1.4) 

4GKzL i c°sOdO 2RIR2 
Hr= ff, c(L2 +R? +R22)~ o (I-Kcos¢) ~' W'-L2 +R21 +R2 

At considerable distances ~: ,~ 1, and the gravimagnetic force of repulsion will be equal to 6GK1K~J(c2L4), 
in agreement with (1.5). For the force of attraction of the rings we have 

GMIM2L i dO 
Fg,= ~(L2 +R~ +R~)~ ° (1-~:c°s¢) ~ 

Hence, the total force acting on ring 1 will be equal to 

Fge(1 MI4KIK2M2c2 f(Ic)] 

A graph of the :function f(~) is shown in Fig. 1. If we assume that the material of the rings consists 
of dust, we have K~ = 2~pARAT~, where Pa is the scalar mass per unit length of the ringA, and MA = 
21tpARaT2A(l+ 0̀2/c ) (A = 1, 2). The total force acting on ring 1 can then be represented in the form 

2`01 / c 2`0 2 / c 
Fee 1 1+"o2 l I c 2 1+'o 2 / c  2 f 0 ¢ )  J 

The expression in parentheses is always greater than zero and vanishes provided 0̀A -O C (A = 1, 2), 
K -o 1. Consequently, equilibrium between rings consisting of dust matter, in the weak-field approxi- 
mation, turns out 1Io be impossible for any rotational velocities less than the velocity of light and the 
corresponding exact solution in the General Theory of Relativity (if it exists) will not have a limit in 
the weak-field approximation. Hence, the distribution of matter in discs which are in equilibrium must 
be fairly compact. 

We will now consider the forces of interaction between two extended discs close to one another 
when the dimensions of the discs are much greater than the distance between them. Suppose the density 
of the material per unit area in the discs is o,4 and the momentum density is iA. These quantities are 

energy-momentum tensor 2T0 - the obtained by integrating the components of the 0 T~ and T°dc over 
small thickness of the disc. Then, in the region of disc 2 in view of the assumption that the distance 
between the discs is much less than the dimensions of the discs, we have that asymptotically ¢2~ 
-2nth, n x H2 ~ -8~i2/c. Hence, the force acting on unit area of the first disc in the region inside it 
(ignoring edge effects) is 

O 
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F = - 2 ~ f f l f f  2 + 8x( i~  • i 2 ) / c 2 (2.1) 

If we assume that the discs have a surface density Pa and consist of dust, for which the trace of the 
energy-momentum tensor is the scalar density (multiplied by c2), we have 

~3 A = p A ~ t 2 ( l + ' 0 A / C 2 ) ,  i A = p A ~ t 2 ~ A  

and the velocity is directed along the tangent to the concentric circles. We then obtain from the expression 
for the force density 

2"01 / c 2"02 / c ") 
r = -2/gff lff  2 1 1 + "02 ] C 2 1 + "02 / C2 ) (2.2) 

Hence, as in the case of dust-like rings, in dust-like extended discs attraction in the internal regions 
predominates over repulsion. Unlike rings, for sufficiently close spacings between the discs the expression 
for the force density approaches a constant (2.2), and hence the dimensions of discs that are in 
equilibrium cannot appreciably exceed the distance between them. In this case a more detailed investiga- 
tion is necessary, which will be carried out in Section 3 to calculate the projection of the principal force 
vector on the axis of symmetry for Kerr discs. 

The projection of the principal force vector, acting on a plane disc in an external field, on the axis 
of symmetry is given by the following expression (the square brackets denote discontinuities in the 
corresponding quantities in the plane of the disc) 

4~G ~ "~n ~n dS + 16rcG ~ [ I t ] H d S = O  (2.3) 

It was assumed in (2.3) that the discontinuity in the gravimagnetie field H only has a tangential 
component. Outside sources the gravimagnetic field H, by (1.3), is a potential field, i.e. H = 2Vw. In 
the axisymmetrie case the functions O and W arise in the Newtonian limit for the Ernst function 

E ~. 1 + 2(0 + i~)/c 2 

We will further assume that two axisymmetric discs rotating around a common axis of symmetry z at 
a distance l from one another act as sources of steady gravitational field. By (2.3) the necessary condition 
of equilibrium of, say, disc 2 in the gravitational field of disc 1 is the following 

20  S (2.4) 
L L ° n J  oz L OX j op j 

In the region of the edge of the disc the fields 02 and ~t 2 are singular, and hence in (2.4) a correct 
passage to the limit from the closed smooth surface to the surface of the disc is necessary. 

3. We will choose as a specific model of each of the discs the weak-field approximation for the Kerr 
solution in which the radii of the discs are much greater than their corresponding gravitational radii 
Gmdc  2. The overall moments of momentum of discs 1 and 2 are given by the formulae K1 = mica,  
1(2 = m2c~, respectively. These discs can be treated as cracks in space-time in which a transition to 
another copy of space-time occurs (similar to the transition from one sheet of a Riemann surface to 
another in the theory of multivalued analytic functions of a complex variable). Thus, we will assume 
that the potentials of the discs are given by the following expressions 

'-+ '-l, : ' )  
O, 2 [r+a r , , )  ~t,, = 2 \r+~ r_,, ' 

r+ a = 4 ( Z  - l a :I= i R  a )2 + p2 
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where Ra is the radius of the ath disc and la is the coordinate of its position on the z axis. We will further 
put ll = 1,/2 = 0, R1 = ct, R2 = 6. In Fig. 2 we show the pattern of lines of equal potential 42 = const 
(where const = tg(x x 0.025n) and n is an integer). The pattern has two axes of symmetry--horizontal 
z ffi 0 and vertical p = 0, and hence we only show the quadrant z ~> 0, p ~> 0 here. The point A in 
Fig. 2 is an unstable position of equilibrium of a saddle type. In the region of the edge of the disc there 
is a singular increase in the gravitational forces similar to the concentration of stresses in the region of 
the edges of a crae]k with a similar asymptotic form. In fact, by (3.1) the complex potential in the region 
of the edge of the disc has the asymptotic form 

mIG ~ - p + iz (3.2) - -  ) 

Ol +/~1 - 420ff~_a) ' 

It follows from the form of the potentials ~a(¥o) that they are symmetrical (antisymmetrical) about 
the planes of the corresponding discs. Hence, the condition of equilibrium (2.4) can be rewritten in 
the form 

j. ~))o(1)2 0 (  3Vl] = dp (3.3) o,, pdp I p 

In the integral on the fight-hand side of (3.3) lim V2 = ( 6  2 - p2)-1/2 as z ~ 0. If wechange to the vari- 
able t = 62 - p2, we obtain the fight-hand side of (3.3) 

2mjm2G j dt a( t) o " ~  - "  dt (3.4) 

Here 

~=I'~]21~-B, A=~b--'~, B - - - , b 2 + 4 0 t 2 / 2 ,  b=t+ot2-~2 +12 

The limit must be taken more carefully on the left-hand side of (3.3). To calculate the left-hand side 
of (3.3) we will consider taking the limit as e ---> 0 of the integral over the surface consisting of a circle 
0 ~< p ~< 6, z = ¢/(2[I) > 0 and part of a torus 

Z2 + (p  _ [~)2 = e2/(26)2 (3.5) 

with 0 ~< p - 6 ~< e/(26), z > 0. We will put 

O 

,¢ 

C 
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\ 
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Fig. 2. Fig. 3. 
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f ( t )  = (2AB) -y2 B -I (l(12 _ t)(/2 _ t + 40~ 2) - 40t2/2 + ~f~(12 _ t + 20~ 2 )) 

The integral on the left-hand side of (3.3) can then be represented in the form of the sum of integrals 
over the surfaces indicated above 

Gmlm2~(£~ 2 2f(~_.~- ~ 2) ) 
2 " ~  ~, o f ( t + ° ~ 2 - ~ 2 ) F ( t ) d t -  ~ 

2 t - t  ~__.~tZ +eZ 
F(t)  = ~'3 (}" _ t ) ~ '  

(3.6) 

The last term in the square brackets corresponds to the integral over a quarter of the circle (3.5), 
obtained using the asymptotic form (3.2). In order to take the limit we will first replace the factor 
2/~/e in this term by the identically equal expression 

2 = e~j F(t)dt  (3.7) 
0 

Splitting the interval of integration in (3.7) into two parts (from 0 to ~2 and from ~2 to 0"), after 
substituting into (3.6) and taking the limit as e ---> 0, we obtain, using (3.4) and (3.3), the required equation 
for determining the distance between two discs l as a function of  their radii ot and I~ 

-f(o~2l+13j f'(t+o.2-[~ 2) -2 ((132-t)~/'(t)) • =0 (3.8) 
o 

This has the simple solution 

l = cx + I~ (3.9) 

We will expand the left-hand side of (3.8) in a series of powers of ~ and take into account terms up 
to I~ 3 inclusive. We obtain 

12 _13~2 2~(312 _~2)  3~2(14 _6/2~2 +Or4) 40t~ 3 (5/4 _1012~2 +~4)  
(/2 + 0~2 )2 I" (/2 + 0~2 )3 4 (/2 + ~2 )2 ~2 + 0~2 )5 I- . . . .  0 

(3.10) 

It follows from (3.10) that ~ = l - o~ + o((l  - cx)3). Numerical solution of Eq. (3.8) shows that the 
solution (3.9) is exact (for a numerical investigation it is best to choose a system of units in which 

= 1). Using the expressions for a and 13 in terms of  the moments of momentum of the discs we obtain 

cl = Kl/m 1 + K2#n 2 (3.11) 

Expression (3.11) gives an upper limit for the distance between actual discs which can be in equilibrium 
when the Newtonian attraction is compensated by gravimagnetic repulsion. In Fig. 3 we show the pattern 
of lines of equal potential for two discs in equilibrium for the same values of the potentials as in 
Fig. 2. The pattern has two axes of symmetry--horizontal z = 0 and vertical p = 0, and hence we only 
show the quadrant z ~ 0, p ~ 0. 

4. We will now consider the condition of equilibrium between a disc described by solution (3.1) and 
a compact source on the axis of rotation z with mass ml and rotational moment / (2  = clan2 directed 
along the z axis (such Newtonian analogues arise for Curzon solutions with rotation in the General 
Theory of Relativity). Then, equating the sum of the Coulomb and gravimagnetic forces, calculated 
using (1.2), to zero, we obtain a condition corresponding to the case when the sum of the first two terms 
on the left-hand side of (3.10) vanishes. 

As ~ --> 0 this condition of equilibrium reduces asymptotically to condition (3.10). Note that this Position 
of equilibrium is unstable with respect to lateral displacements from the z axis when ct ~ l ~ ct~/3. 
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5. The results obtained above are a Newtonian interpretation of the exact solutions with a regular 
behaviour of space-time along the section of the axis of symmetry between the rotating bodies [10], 
obtained here within the framework of the General Theory of Relativity using the method employed 
in [11]. These resuJLts are in a sense a summary of those obtained in [5, 6, 7, 9]. 

In Fig. 4 we show attracting rotating discs in equilibrium, where the radius of disc 2 is fixed while 
discs I have radii bounded by the dashed otrves in Newtonian theory and by the continuous curves in 
the General Theorj of Relativity. The pattern has an axis of symmetry which coincides with the axis of 
the discs, and hence we have shown only half the pattern here. Along sectionAv42 the second attracting 
body is converted into a black hole, since along this part the condition for the existence of a horizon 
is satisfied. Hence, equilibrium is possible between discs and black holes, where the black holes can 
only appear in the neighbourhood of the saddle pointA. We recall that in the Weil coordinates employed 
a black hole is a section of the axis of symmetry. 

There is another curious result that can only be obtained in the accurate theory from Einstein's 
equations: if two di~;cs with equal masses and equal moments of momentum converge without limit, an 
extremal Kerr solution is obtained with double mass and rotation parameter equal to the mass multiplied 
by G/c 2. In the General Theory of Relativity there is one other free parameter to describe the equilibrium 
configurations in addition to the distance between the discs. To obtain the values of these two parameters 
the conditions for tlhere to be no conical points and closed timelike world lines are used. 
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